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Calculation of axisymmetric jets and wakes with 
a three-equation model of turbulence 
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(Received 31 January 1977 and in revised form 12 December 1977) 

The concept of diffusion by bulk convection formulated by Bradshaw is applied to the 
transport equations for the turbulent kinetic energy, turbulent shear stress and an 
integral length scale. The resulting set of hyperbolic partial differential equations is 
solved by an explicit finite-difference scheme for the cases of incompressible axisym- 
metric wakes and jets in a coflowing air stream. It is found that the profiles of mean 
velocity and shear stress are almost insensitive to the empirical input whereas the 
profiles of kinetic energy are very sensitive. 

1. Introduction 
One major problem in turbulence-field modelling techniques is the choice of 

necessary and adequate equations. Considering the turbulent kinetic energy equation 
to be the only equation sufficiently documented by experiment, Bradshaw, Ferriss & 
Atwell (1967) have transformed it into a rate equation for the shear stress. The basic 
assumption in this formulation is that profiles of all turbulence quantities at  
a given streamwise location are related to the shear-stress profile by empirical 
functions. The outstanding feature is the modelling of the diffusion term by bulk con- 
vection, which makes the resulting set of equations of hyperbolic type. The original 
method was applied to three-dimensional boundary layers by Nash (1969, 1972). An 
adapted version using the interaction hypothesis to deal with shear layers in which the 
shear-stress changes sign was used by Bradshaw, Dean & McEligott (1972) to calculate 
symmetrical duct flows. Purther, the same hypothesis was used by Morel & Torda 
(1974) to calcuIate two-dimensional free shear flows, but with the inclusion of an 
empirical rate equation for the length scale. The interaction hypothesis mainly con- 
siders the flow as two separate interacting shear layers which are assumed to interact 
only through the mean velocity profile. As pointed out by Morel & Torda (1974), 
although this is a plausible approach for two-dimensional flows its applicability to the 
axisymmetric case is questionable owing to the necessity of considering an infinite 
number of interactions. 

The simultaneous use of the equations for the turbulent kinetic energy and the shear 
stress constitutes the approach which is generally referred to as the multi-equation 
model of turbulence. Turbulence models in this class have been developed by Daly & 
Harlow (1970), Donaldson (1971), Rotta (1971, 1975), Hanjalid & Launder (1972), 
Lumley & Khajeh-Nouri (1974) and Launder, Reece & Rodi (1975). All have the 
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common feature that diffusion of kinetic energy or Reynolds stress is represented as 
a gradient transport phenomenon. Donaldson ( 1971) has assumed the dissipation 
length scale of turbulence to be a constant, whereas Rotta (1971) has used a rate 
equation to represent it. Daly & Harlow (1970), Hanjali6 & Launder (1972), Lumley & 
Khajeh-Nouri (1974) and Launder et aE. (1975) haveexpressed the turbulent dissipation 
term explicitly in terms of its own rate equation. All of these methods use the basic 
formulation of Rotta (1  95 1) to represent the pressure/velocity-gradient correlations 
appearing in the shear-stress transport equation. This term represents a major 
difficulty in the multi-equation models of turbulence owing to the impracticability of 
its measurement and therefore its quantitative evaluation. 

The present work is an attempt to  apply the concept of diffusion by bulk convection 
to the rate equations of the turbulent shear stress, turbulent kinetic energy and an 
integral length scale. The resulting set of hyperbolic partial differential equations is 
solved by the Lax-Wendroff explicit finite-difference scheme for the cases of incom- 
pressible axisymmetric wakes and jets in a coflowing air stream. Physically, the 
coflowing jet can be considered as a relatively complex turbulent flow which cannot 
be put in self-preserving form. This, together with the absence of solid boundaries, 
makes these flows attractive cases for testing models of turbulence. 

2. The governing equations and closure assumptions 
The governing equations are written with respect to mutually perpendicular 

co-ordinates x, y and z such that for the axisymmetric case y = 9-8. The mean velocity 
components are ( U ,  V ,  W )  and the fluctuating velocity components (u,v,w).  An 
overbar denotes a time average, a repeated index indicates summation, subscript 1 
refers to free-stream conditions whereas a subscript 0 refers to the centre-line. If the 
usual boundary-layer approximations are made and account is taken of the fact that 
a t  high Reynolds numbers the turbulent stresses are much larger than the molecular 
stresses, the equations of continuity, momentum, turbulent kinetic energy and 
turbulent shear stress take the following forms (see, for example, Rotta 1971): 

a( u y r ) / a ~  + a( vyr) /ay = 0,  (1) 

ax 

PI + +pU: = constant, J 

dissipation 

ak ak -au i a 
U - + V -  = - U V - - - - - - ~ ~ V  
ax a9 aY YraY 

convect,ion production diffusion 

(3) 

- - -  
where k = $(u2 + v2 + w2), 

convection production redistribution diffusion dissipation 

I n  the momentum equation the normal-stress term is smaller than the others and 
hence will be neglected, and for the cases under investigation dPl/dx = 0. It should 
further be noted that the above form of the shear-stress rate equation implies that the 
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term pertaining to the effect of the 'redistributive' part of the shear-stress diffusion 
is neglected because it is smaller than the other terms. In  the above equations r = 1 
for axisymmetric flows and r = 0 for two-dimensional flows. 

To close the set of equations (1)-(4), the diffusion and dissipation terms in (3) and 
the production, diffusion and redistribution terms in (4) have to be modelled. 

The dissipation term is generally modelled by using the Kolmogorov hypothesis of 
locally isotropic turbulence at high Reynolds numbers. This, as well as the fact that in 
isotropic turbulence cross-correlations between velocity components must be zero, 
leads to 

where C, is a constant and L is assumed to be proportional to an integral length scale 
representative of the large-scale motion. 

The diffusion terms in (3) and (4) contain both third-order velocity correlations and 
pressure-velocity correlations. The latter are neglected because the few measurements 
of transport-equation terms suggest that the correlations are small near a free-stream 
edge, which in turn implies that they are not much larger in the interior of the flow 
field (Bradshaw et al. 1967; HanjaliC: & Launder 1972), so that 

@/p = @/p = 0. (6) 

The diffusion of velocity fluctuations can be accepted as consisting of two parts, 
namely a gradient diffusion and a bulk convection. If # is the diffused velocity 
correlation then 

where C and C, are constants, uT is a characteristic velocity of the turbulence and 
(V,)i is a turbulent transport velocity which is characteristic of the large-scale motion. 
The relative amounts of transport by gradient diffusion and bulk convection depend 
on the quantity transported (Townsend 1956, p. 110). Following Bradshaw et al. (1967), 
the assumption that C = 0 in (7) leads to the following expressions for the diffusion 
terms in (3) and (4) : 

In  (8) the subscripts k a n d j  refer to the quantities k and UV respectively; C, and Ch are 
constants to be determined. 

The general expression for the redistribution term in (4) was obtained by Chou 
(1945) by taking the divergence of the equation for the velocity fluctuations. This 
equation shows that the pressure-velocity correlations originate from interactions of 
the velocity fluctuations among themselves and the interaction of the mean velocity 
gradients with the velocity fluctuations. For flows with a preferred direction of the 
mean velocity, Rotta (1971) has proposed the following expression: 

Z = C2'V,k, (Z) = CLT$uV. (8 )  

in which C, and C, are constants to be determined experimentally. It should also be 
noted that in thin shear flows the model proposed by Hanjalid & Launder (1972) 
reduces essentially to the form given by (9). 
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proportional to k. This gives 

where C, is a constant to be determined experimentally. Finally, substitution of (6), 
(6), (8), (9) and (10) into (3) and (4) yields the approximate forms of the governing 
equations. 

Integration of the rate equation for the two-point velocity correlation ui, A ~ j ,  

gives transport equations for an integral length scale times w. Rotta (1951) has 
derived an equation for an integral length scale defined by 

Following Hanjali6 & Launder (1972), the normal-stress terms will be assumed to be 

(10) 
- 
Vzau/ay = c,kau/ay, 

2kL = f/+=Rii(y)dy, 8 - -m 

where Rii is the two-point correlation function and 2k = &(O). The factor Q makes L 
identical with the lateral integral scale in an isotropic turbulence field. If only the first 
term is retained in the series expansion for the production term, if the dissipation 
term is assumed to be proportional to the dissipation term in the kinetic energy 
transport equation and if the diffusion is modelled by bulk convection, Rotta's 
eauation vields 

convection production diffusion dissipation 

Equation (12) can be further simplified by subtracting L( U ak/ax + V ak/ay) from both 
sides and dividing by k.  Neglecting the effects of the mean strain rate in comparison 
with those of the fluctuating st~rain rate and assuming V,  = V, and Ci = C, (Bradshaw 
1973) gives t'he following rate equation for L: 

aL a~ aL 
U-+V- = - C  V,---C1(C8-1)k&, 
ax ay "y 

where C, is a constant to be determined. 
The primary objective in assigning values to the constants appearing in the closure 

assumptionsis that they should be applicable to alarge number of flow cases. Therefore 
simple types of flows are considered in order to evaluate some of these constants. 
Having noted that Uberoi's ( 1  957) measurements of the decay of an isotropic field in 
the absence of mean shear indicate that 2.6 < C, < 3.0, Rotta (1975) recommends 
C, = 2.8. The same value is used by Hanjali6 & Launder (1972). Considering a homo- 
geneous turbulent field in which the only non-zero velocity component U increases 
linearly with y, the approximate forms of the equations for the kinetic energy and 
shear stress give C, - C, = C3(UV/k)2. Hanjalid & Launder (1972) have estimated 
(UV/k)Z = 0.1 from the measurements of Champagne, Harris & Corrsin (1970). For the 
dissipation constant Rotta (1975) has estimated C, = 0.165. Further, from his inductive 
treatment of the length-scale equation, a value of C, = 0-8 is obtained. 

The bulk velocities for k and UV can be estimated by considering V, and J$ to be 
simple functions of z and y (Bradshaw et al. 1967) such that 

v, = CZIUVml+fAY), J$ = c; IUv,IV,(Y). (14) 

In  these expressions IuzC,Ji is chosen to be a velocity scale of the large eddies. The 
symmetry conditions for the distributions of the second and third-order correlations 
require bothf,(y) andf,(y) to be antisymmetric. 
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3. The calculation procedure 

equation constitute the following system: 
The approximate forms of the governing equations together with the length-scale 

(15) 
af af 
- + A(f, 2, y )  - + B(f, X, y )  = 0. 
ax aY 

Here f and B are four-component vectors and A is a 4 x 4 matrix: 

0 ’  : I  f =  [;I, A=;[: 0 V + C g $  

V 0 1 
v+c,v, 0 

0 0 0 v+c,v, 

1 
G/y’  

c p a c / a y + c , c , k t u v / L  
C,(C, - 1) k* 

1 C,k aV,/ay + (C,& k / y )  r + C, k % / L  I 
B = ” l  

where a = C,-C,. The cross-stream mean velocity V appears only in the coefficient 
matrix A, and hence can be calculated separately from the equation along the vertical 
characteristic. This equation is obtained by substituting the equation of continuity 
into the 2-momentum equation and reads 

- 0. (16) 
1 d(yrV)  V d U  1 d ( y r E )  

yr d y  U dy  Uy’ dy  
--__---- - 

In  (15) and (16), r = 1 for axisymmetric flows and r = 0 for two-dimensional flows. 
The characteristic equation of the matrix A is 

det (hl -A) = 0, (17)  

where I is the identity matrix. The eigenvalues of A are found from (17) and read 

A,, = ( V  +C,V,)/U (double characteristic), 

A3,& = {2V+CCgVjk [(C25)2+4ak])}/2U.  (18) 1 
Since the quantity 4ak is always positive, all the eigenvalues are real and correspond 
to real characteristic directions. Under this condition the system of equations (15) is 
hyperbolic. 

The boundary conditions imposed at the inner and outer boundaries are as follows: 
at  the inner boundary (the line of symmetry), UV and cross-stream derivatives of U ,  k 
and L are set to zero; a t  the outer edge, the free-stream conditions are assumed to be 
U = U,, k = 0 and UV = 0 and the cross-stream derivative of L is set to zero. Following 
Bradshaw et at. (1967), the outer edge of the flow is taken as the point where the 
difference between two successive values of the mean velocity is less than a certain 
specified amount. 

In  the axisymmetric case there are two terms in the vector B which will assume the 
indeterminate form 0 / 0  a t  the inner boundary, where y = 0. Limiting forms for 
these terms can be evaluated by series expansion such that 
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It has already been stated in 8 2 that V, is an antisymmetric function of y. This adds 
the constraint that VJO) = 0. 

In  order to integrate the set of governing equations (15) the explicit two-step Lax- 
Wendroff method was used. This method consists mainly of using Lax's method to  
calculate the provisional values of the unknown vector f a t  the intermediate marching 
levels. These values are then used to calculate the primary points by employing a 
midpoint leapfrog calculation (Richtmyer & Morton 1967, p. 303). A typical computa- 
tional molecule is shown in figure 1;  using the same notation as in figure 1, the two 
steps of this method can be written as 

f Z \  = i(f%+l -i- f;) + Wf/aX):+*, (20) 

(21) f;+' = f; + t(af/aX);+*. 

The original Lax-Wendroff scheme employs only second-order-accurate finite- 
difference operators. Nash (1972), however, reports the occurrence of instabilities in 
his calculation of a three-dimensional boundary layer using Bradshaw's turbulence 
model and the Lax-Wendroff scheme. Stability was restored by using fourth-order- 
accurate central differences in the cross-stream direction. He further reports that 
maximum precision was obtained when fourth-order differences were used only in the 
first step. Maximum stability corresponded to the case when the values of f  a t  the 
advanced levels were calculated by using only provisional values from the inter- 
mediate marching levels. Making use of (20) and (21) and employing fourth-order 
central differences in the fist step, (15) can be put into the following difference form: 

%I\ = #(fg+l +f;) - ,hAk+&f;+l -f;) +zz@+*(f;+e - 3f%+i 3f;-f%-i) -jjB:+g 
t t n  t 

(22) 

(23) fZ+' = (1  - Q,) f; +A (c$$ -f;?\) --Am n+?i ( fn+t m, - f;AJ - tB;+lf). 
SL 
2 h 

. and 
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In  (22) and (23), !2 and a1 are disposable constants such that when !2 = a, = 0, (22) 
and (23) will reduce to the original equations of Lax-Wendroff type. The provisional 
values of A and B can be evaluated by averaging values at data points such that 

and similarly for B. 
It is known that the convergence of explicit finite-difference discretizations of 

hyperbolic equations will be ensured if the Courant-Friedrichs-Lewy (CFL) condition 
is satisfied by choosing a step size in the marching direction such that 

It can further be shown that this condition is coincident with the stability requirements 
of the original difference equations of Lax-Wendroff type, e.g. by using the von 
Neumann stability analysis. However, the CFL condition for stability is necessary 
but not sufficient. 

A;+$ = $(A;+l + A;), A$+$ = +(A;:: + A;tI), 

(hm,xlxt/h < 1. 

4. Results and discussion 
The finite-difference equations (22) and (23) were solved by a Fortran program on a 

UNIVAC 1106 computer. The details of the program are given elsewhere (Biringen 
1975). The method was tested by comparing the program predictions with the data of 
Biringen (1975) for an axisymmetric jet in a coflowing air stream and the data of 
Chevray (1968) for the turbulent wake of a body of revolution. In  the former case 
measured distributions of U ,  k and iiZ at an axial distance of ten nozzle diameters 
were used as the initial conditions. The distributions of L were inferred from the 
measurements of the one-dimensional energy spectrum of the u-component of the 
fluctuating velocity. Chevray’s (1968) measurements of U ,  k and UV at an axial 
station three diameters downstream of the body were chosen as the initial conditions 
for the wake calculations. The distributions of t h e  length scale L in this case were 
obtained from the dissipation, which in turn was inferred from the production of 
turbulent kinetic energy. 

It should be noted that in 5 2 values were assigned to all the constants except the 
diffusion constants C, and Ch. In  addition to this, the diffusion functionsf,(y) and f,(y) 
have to be prescribed as empirical inputs. For the jet calculations, these inputs were 
optimized for m = 0.1, where rn is the ratio of the velocity of the outer stream to the 
jet exit velocity. In  all the subsequent calculations pertaining to jets, identical 
empirical inputs were used. 

Numerical experiments were performed to optimize the empirical inputs by setting 
C, and Ch equal to one and modifying fl and fa, having made an initial estimate of 
these functions from the data of Wygnanski & Fiedler (1969) for the axisymmetric free 
jet. The functions fl and f, were prescribed in terms of r , ~  = y/S, where S is the half- 
thickness, and were calibrated at every step in the integration procedure. The following 
conditions had to be met. 

(i) In  order to obtain increasing kinetic energy levels on the centre-line, fi(r,I) had to 
be allowed to attain negative values. Although this is not a direct outcome of the 
correlation measurements of Wygnanski & Fiedler (1969), it  is compatible with the 
idea that energy should be transported away from regions of maximum energy 
(Bradshaw 1975, private communication). 
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FIGURE 2. Diffusion functions. - --, jets; --, wakes. 

(ii) The shear-stress profiles were found to be insensitive tof2(7). However, because 
near the edges of the flow A, = (V + C;lV,)/U is the outermost characteristic, V, had to be 
adjusted to allow for the rate of spread of the flow. 

(iii) The diffusion term in the shear-stress rate equation is zero on the centre-line. 
This term is given by 

cL-=c; a(&2) a(=vJ) 
-= 
aY aY 

But on the centre-line Zi = 0 and i%Z/ay 4 0, hence zero diffusion requires 

(iv) The only modification to the empirical inputs for the wake calculations was the 
shift in the value of 7 at whichf2(7) started to assume values other than zero (figure 2). 
This was adjusted to obtain the best fit to the measured mean velocity profiles. 
Adequate values were around 7 = 0.6 for the wake calculations and 7 = 1.0 for the jet 
calculations. 

According to these considerations, the functions shown in figure 2 were found to be 
adequate to describe the diffusion of the kinetic energy and the shear stress. The 
profiles of mean velocity and shear stress were almost invariant with the values of 
these functions, however the profiles of kinetic energy were extremely sensitive, 
especially to the minimum off,(q). 

Calculations were at first performed by using the original Lax-Wendroff difference 
equations by setting SZ = R, = 0. The CFL condition was satisfied in choosing the 
step size in the x direction, However, for the jet calculations this scheme produced 
instabilities in the 7iC and k profiles around the axis of symmetry for large values of x/d 
(where d is the initial jet diameter), whereas a value of R, 21 0.1 was found to be 
adequate to restore stability. It should be noted that this is much less than SZ, = 1.0, 
which is the value used by Nash (1972). Figures 3(a), ( b )  and (c )  show profiles of the 
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FIUURES 3(a, b ) .  For legend see following page. 

excess mean velocity, the shear stress and the kinetic energy for the axisymmetric 
jet at typical stations for m = 0-1 ,0 .2  and 0.3 respectively. The computed profiles are 
compared with the experimental results of Biringen (1975) and display close agree- 
ment for the mean excess velocity and the shear stress. The computed kinetic energy 
profiles, however, indicate a tendency for the kinetic energy to diffuse towards the 
centre-line at  large z/d.  
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FIGURE 3. Axisymmetric jet: profiles of U ,  Ic and UV. -, calculations; - -, 0 ,  measurements 
of Biringen (1975). (a) m = 0.1, z / d  = 50. ( b )  m = 0.2, x/d = 115. (c) m = 0.3, x/d = 182. 

Y 

FIGURE 4. Axisymmetric jet: rate of spread. (a )  Present calculations. ( b )  Predictions of Rodi 
(1972). 0, measurements of Biringen (1975); A, measurements of Antonia & Bilger (1973). 

In  most work on fully developed free turbulent flows it is assumed that a t  some 
distance downstream of the origin the flow development will depend only on the 
variable Z = (z - x,)/B, where 8 is the excess momentum thickness and for axisym- 
metric flows reads 

The initial conditions a t  the origin are assumed to affect only xo, which is the location 
of the virtual origin. 

In figures 4-7 the jet flow development is investigated as a function of 5. The com- 
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FIGURE 5. Axisymmetric jet : centre-line velocity decay. (a) Present calculations. (b)  Predictions 
of Rodi (1972). 0, measurements of Biringen (1975); A ,  measurements of Antonia & Bilger 
(1973). 

FIauRE 6. Axisymmetric jet: kinetic energy on the centre-line. ---, present calculations for 
m = 0.1; --, present calculations for m = 0.2. (a) Present calculations form = 0.3. ( b )  Predic- 
tions of Rodi (1973). 0, A, 0 ,  measurements of Biringen (1975) for m = 0.1, 0.2 and 0.3 
respectively; A,  measurements of Antonia & Bilger (1973). 

puted profiles are compared with the predictions of Rodi (1972), which were obtained 
from a two-equation model of turbulence where the auxiliary variables are k and kL 
and G is calculated from the Prandtl-Kolmogorov formula 

where C, is a constant to be determined. 

- uv = - c, kt  L a u p y ,  
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FIQURE 7. Axisymmetric jet: maximum shear stress. ---, present calculations for rn = 0.1; 
_-- present. calculations form = 0.2 ; - present calculations for m = 0.3; 0, A, , measure- 
merits of Biringen (1975) form = 0.1, 0.2 and 0-3 respectively; A,  measurements of Antonia & 
Bilger (1973). 

It should be noted that the curves corresponding to the present calculations were 
obtained by superposing the results for different m. That the results for the variation 
of 810 and UJU,, respectively, fall on a single curve indicates that the predictions 
are in accord with the expected universal behaviour of the mean flow parameters 
with 5. This is supported by the experiments of Biringen (1975) and Antonia & Bilger. 
(1973) except at  large5, where the experimental errors are likely to be more pronounced. 

The variations of the centre-line value ko/Ui  of the turbulent kinetic energy and the 
maximum value (uV),/U; of the shear stress with Z are shown in figures 6 and 7 
respectively. For these quantities the results of the present calculations for different m 
follow the non-universal behaviour displayed by the experimental data, as well as 
predicting closely the limiting values of ko/Ui .  The same trends are observed in the 
variation of (uV),/UE with Z, but in this case for m = 0.3 the calculated increase in the 
shear-stress level is more abrupt than that indicated by experiment. 

Profiles of the mean velocity deficit, the shear stress and the kinetic energy for the 
axisymmetric wake are shown in figure 8. The predictions are compared with the 
experimental results of Chevray (1968) at x / D  = 15.0, where D is the maximum 
diameter of the body of revolution. Agreement of the predicted mean velocity with 
experiment is close, but the distributions of shear stress and kinetic energy display a 
larger departure from experiment than was observed in the set calculations; however 
the overall agreement of the predictions with experiment is satisfactory. I n  figures 9 
and 10 a comparison of the present wake calculations is made with those for Pope & 
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FIGURE 8. Axisymmetric wake: profiles of U ,  k and 
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FIGURE 9. Axisymmetric wake: centre-line velocity decay. 0, measurements of Chevray (1968). 
(a) Present calculations. ( b )  Calculations of Pope & Whitelaw (1976). 

Whitelaw's (1976) model In. Computational results are compared with the data of 
Chevray (1968). Both the streamwise development of the mean flow in terms of the 
decay of the centre-line velocity and the streamwise development of the turbulent 
structure in terms of the maximum shear stress are better predicted by the present 
method. For the wake calculations, the profiles of mean velocity and shear stress 
retained their self-similarity whereas the profiles of kinetic energy, k /U$  vs. 91, 

remained a function of the streamwise co-ordinate, mainly because of the rapid 
increase in k,/U$ at large x / D .  

The primary difficulty encountered during the computations was due to the 
anomalous behaviour of the k profiles around the centre-line, which was more pro- 
nounced in the wake calculations. This could partly be attributed to the fact that the 
well-posed character of the differential equations is altered in a narrow region close to 
the symmetry axis. It should be noted that on the centre-line boundary conditions 
had to be prescribed for all the dependent variables U ,  k,  UV and L (I' is calculated 
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Figure 10. Axisymmetric wake : maximum shear stress. 0, measurements of Chevray 

(1968). (a) Present calculations. ( b )  Calculations of Pope & Whitelaw (1976). 

separately from the equation along the vertical characteristic). However, Kreiss 
( 1973) discusses the fact that for first-order hyperbolic systems well-posed problems 
should probably have the number of boundary conditions specified equal to the 
number of ingoing characteristics. In  the present problem, when y -+ 0 the charac- 
teristics given by (17) reduce to 

Al, = 0, As, = (ak)*/U,  

hence the double characteristic coincides with the symmetry line and the two others 
are inclined to the symmetry line a t  equal and opposite angles, so that the maximum 
number of boundary conditions allowed is three. The results, however, show that this 
affects the solution only in a very narrow region around the centre-line and only in the 
k profiles. 

5. Concluding remarks 
The main features of this work, which concerns the prediction of axisymmetric 

wakes and coflowing jets, are now summarized. 
(i) The method is capable of predicting closely the mean flow field as well as the 

distributions and maximum values of the shear stress. 
(ii) The centre-line values of the kinetic energy are also closely predicted but the 

k profiles display a tendency for the kinetic energy to diffuse towards the centre-line 
at large streamwise distances. This is partly attributed to the necessary alteration of 
the well-posed character of the differential equations in a narrow region around the 
symmetry axis. 

(iii) Kinetic energy profiles are found to be very sensitive to the empirical input 
fi(q). Profiles of the mean velocity and G, however, are much less sensitive to the 
empirical inputs. 
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(iv) For this system of equations the Lax-Wendroff explicit scheme had to be 
modified to restore stability, lending support to previous work in the same direction 
(Nash 1972). 

(v) In  the case of a jet issuing into a still ambient fluid, since the characteristic 
A, --f co as U -+ 0 special numerical treatment at the outer edge is necessary to march 
the solution in the streamwise direction. 

The author wishes to  thank Prof. J. Ginoux, Prof. J. J. Smolderen and Prof. D. 
Olivari for helpful discussions during the course of this work. Clarifying comments 
by Referees 1 and 2 are also acknowledged. 
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